卡方分布的特点,证明卡方分布的数学期望和方差?

卡方分布的特点

卡方分布的特点,证明卡方分布的数学期望和方差?

文章插图
若n个相互独立的随机变量均服从标准正态分布,也称独立同分布于标准正态分布,则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布,卡方分布的特点有:
1、卡方分布在第一象限内,卡方值都是正值,呈正偏态,右偏态,随着参数的增大,卡方分布趋近于正态分布,卡方分布密度曲线下的面积都是1;
2、卡方分布的均值与方差可以看出,随着自由度的增大,卡方分布向正无穷方向延伸,分布曲线也越来越低阔;
3、不同的自由度决定不同的卡方分布,自由度越小,分布
证明卡方分布的数学期望和方差?1.设X=Y1^2+Y2^2+Y3^2+...+YN^2 其中Yn都是独立的而且服从N(0,1)
那么X服从自由度为N的卡方分布
那么D(X)=D(Y1^2)+D(Y2^2)+...+D(YN^2) 因为Yn独立
【卡方分布的特点,证明卡方分布的数学期望和方差?】=2N 因为D(Yn^2)=E(Yn^4)-E(Yn^2)=3-1=2
其中标准正态分布的四阶期望是3 要么通过公式得出E(Y^n)=(2n)!/(n!2^n) 其中Y是标准正态随机变量 n是奇数 如果n为偶数时E(Y^n)=0 要么直接算 算法是分步积分法
或者可以直接计算卡方分布的方差 很好计算 因为自由度为N的卡方分布其实是系数为N/2,1/2的Gamma分布 而Gamma函数的性质让我们很容易计算出X的任何阶期望 具体方法是:
X的n次方期望 就是密度函数乘x^n积分 这时你把x^n放进密度函数你的积分函数里面就得到x的N/2-1+n次方也就是说系数从N/2变成了N/2+n 同样你把分式下面的Gamma函数和1/2^(N/2)提到积分外部 然后添加需要的系数(使得该式变为系数为N/2+n和1/2的Gamma分布 对1积分为一)然后除以你添加的系数 最后积分外部的所有系数就是你的x^n的期望了
2.设X服从N(0,1)Z服从自由度为N的卡方分布 X和Z独立 那么D(T)=E(T^2)-E(T)^2 其中E(T)=E(X/sqrt(Z/N))=E(X)*E(1/sqrt(Z/N))=0
所以D(T)=E(T^2)=E(X^2/(Z/N))=E(X^2)*E(N/Z)=N*E(X^2)*E(1/Z)
其中E(X^2)=1 E(1/Z)=1/(N-2) (通过密度函数计算 同第一题 卡方分布的1/2次方期望可以很容易求出)
所以D(T)=N/(N-2)
对了 自由度为k的卡方分布的密度函数是

    推荐阅读