拍摄到火星之花,好奇号火星车( 二 )


同位素温差电池利用的就是核衰变产生的子核动能(热量),利用温差电材料的热电效应将热变为电,这是最近40年主流的核电池技术,又被称为放射性同位素热电电池(radioisotope thermoelectric generator,RTG),是静态的发电装置,具有结构紧凑、可靠性高、生存力强、质量比能量高、寿命长等特点 。
利用阿尔法衰变材料作为热源的同位素温差电池通常使用钚-238(二氧化钚-238),(钚-238是一种人工核素,其化学性质有剧毒,其半衰期为87.7年,很适合用于深空探索,理论上,每千克钚238自然衰变可产生568瓦的热量,如果其热量全部转化为电能,还是非常可观的,但受制于材料的纯度、热电转换的技术等因素,实际效率通常不超过6% 。
第一个钚源于1959年在坟堆(Mound)实验室被制备出来,这个实验室位于美国俄亥俄州迈阿密斯堡,是美国原子能委员会(后来成为能源部)在冷战期间进行核武器研究的机构 。利用贝塔(β)衰变材料作为热源的同位素温差电池通常使用镍63、锶90、钇90等核素,它们主要发射贝塔粒子,其发电量相对较小,常用于微机电系统的电源 。
原因之一:功率太小、效率太低,无法满足用电需求我们先来看看嫦娥4号身上的同位素温差电池到底是个什么水平?根据相关资料,嫦娥4号使用的这块电池重7千克,功率3.2~3.5W,这是个什么概念呢?这就和你夏天所用的手持小电扇功率差不多 。如此小的电功率无法支撑起其科学载荷的用电需求(主要用这点电测了一下月夜的最低温) 。
【拍摄到火星之花,好奇号火星车】作为对比,好奇号的核电池重45千克,功率为110W 。根据前面的钚238的理论产热数据:嫦娥4号的这块电池,其热电转换率仅为万分之8.8 。好奇号的核电池,其热电转换率为千分之4.3 。也就是说其效率提高了近50倍 。当然这个数据只是一个参考值,因为电池的重量不代表电池电芯中钚238的重量,所以实际的能量转换率肯定比这个要大,但这一数据也反映了综合的工艺技术,差距还是很大的,因为电池核心的材料都是钚238,差距的关键就是温差发电模块的差距了 。
原因之二:先期实验目的已经达到短时间内我国的同位素温差电池还处于研制试应用阶段,其功率还达不到实际应用的水平 。月球上的昼夜温差能达到300度,最低温度约零下180度,火星昼夜温差在120度,最低温度通常在零下85度,因为我国研制的同位素温差电池已在月球上进行了验证,而月球上昼夜温差相比于火星更加严苛,所以再大老远的把电池运到火星上测试就显得没那么必要了 。
原因之三:任务目标需要的用电和机动性不同虽然太阳能电池的功率质量比以及使用寿命现阶段与同位素温差电池差距不大,但其巨大的占用面积是其最大的短板,这在一定程度上影响了科学载荷的配置和使用的灵活性以及整车的机动性 。任务的设计机动性和机动距离一种程度上决定了供电方式:“好奇”号于2012年8月5号登陆,于2016年9月24号结束扩展任务,设计任务时长超过4年,在火星上执行任务的距离为13.93公里,虽然好奇号的整车质量达到了899千克,属于重型科研平台,但其平均时速达到了9米/每火星天,是跑得最远的机遇号(约43公里)时速的3倍,机动性显然更强 。
而在2018年5月发射的洞察号,因为其是作为一个固定的着陆器研究火星核心、地幔和地壳等内部要素的演化,不需要进行机动,说白了就是落地就安家的那种,所以它并没有配备同时期使用率很高的同位素温差电池 。而天问一号火星车作为首次降落火星执行地面探测任务的设备,执行任务的时长较短,计划于2021年4月23日降落火星,并进行为期3个月的探索,从保守的角度讲,虽然并没有任务设计机动距离的相关数据,但结合嫦娥系列任务的机动距离数据(玉兔二号行驶了463.26米)和火星车的实车结构来看,显然它也并不需要做很长距离的机动 。

推荐阅读