约翰·赫歇尔(John Herschel)
1852年,英国的乔治·斯托克斯 (George Stokes) 在他的巨著《论光的折射率变化 (On the Change of Refrangibility of Light) 》中指出:用分光计观察太阳光照射奎宁和叶绿素的水溶液时,只有当溶液置于光谱的紫外光区域才会产生所发光的波长比入射光波长要长效果 。
斯托克斯判定:这种现象是由于这些物质吸收光能后重新发射出不同波长的光 (属光致发光),并非因光的漫射作用引起,他把这种光称为荧光 (Fluorescence) 。
1864年他在一次演讲中首次提出:荧光可作为一种分析工具,可惜他的建议没能被很快地应用于光学显微成像技术 。
乔治·斯托克斯(George Stokes)
过了40多年,德国的奥古斯特·科勒 (August K?hler) 与亨利·西登托普夫 (Henry Siedentopf) 于1911年研制出首个荧光显微镜 (Fluorescence Microscope) 测试装置 。
当时的荧光显微镜以紫外光线为光源,用荧光色素对观测目标 (细菌、植物、动物组织等) 进行染色处理,紫外光的照射会激发观测目标上的荧光物质发出荧光,研究者根据自发荧光的成像开展研究 。
荧光显微镜可用于观察细菌、植物和动物组织中的自发荧光现象 。但因植物和动物组织中的自发荧光很弱,加之当时相关的技术还不够成熟,荧光显微镜的应用在20世纪初期发展较慢 。
奥古斯特·科勒(August K?hler)、亨利·西登托普夫(Henry Siedentopf)
第一台荧光显微镜测试装置
20世纪30年代后,得益于各相关科学领域技术的进步和创新,荧光显微成像技术迎来了新的发展机遇 。
1935年,奥地利的马克斯·海廷格 (Max Haitinger) 等人改进了生物组织标本的染色技术,用荧光色素染色来标记不能自发荧光的特定组织成分、细菌和其它病原体,标本的荧光亮度增强了,在荧光显微镜下可观察到生物组织的续发性荧光 。20世纪50年代,随着荧光抗体标记方法及荧光显微镜装置的改进,荧光技术的应用逐渐推广 。
日本的下村修 (Osamu Shimomura) 等人1962年从维多利亚水母中发现了一种奇特的蛋白质,从蓝光到紫外线都能使其受激发而发出绿色荧光 。1974年,他们得到了这种蛋白的纯化物,称为绿色荧光蛋白 (Green Fluorescent Protein,简称GFP)。绿色荧光蛋白的最突出特点是光毒性比传统的荧光分子弱得多,非常适合用于对活细胞进行标记 。而基于绿色荧光蛋白的光学成像技术可使观察者直接看到从微观到宏观各个层次的生命现象 。
下村修(Osamu Shimomura)
在发现绿色荧光蛋白20多年后,美国的马丁·查尔菲 (Martin Chalfie) 于1993年通过基因重组技术使除水母以外的生物 (大肠杆菌等) 也产生出绿色荧光蛋白 。他将绿色荧光蛋白真正应用于生物样品的标记,建立起用绿色荧光蛋白研究基因表达的基本方法 。由于许多重大疾病都与基因表达异常相关,查尔菲的成果意义重大 。
美籍华人钱永健 (Roger Y. Tsien) 大幅度改造优化了绿色荧光蛋白,提升了它的发光效率,还进一步发展出红、蓝、黄色的荧光蛋白,在生物学研究领域得到了广泛应用 。这些荧光蛋白成为生物学家们得心应手的工具,实时监测各类病毒“作案”过程的愿望已可以实现了 。
下村修、查尔菲与钱永健三位科学家因发现、提取和改进绿色荧光蛋白的杰出贡献获得了2008年诺贝尔化学奖 。
马丁·查尔菲(Martin Chalfie)
钱永健(Roger Y. Tsien)
荧光显微镜
荧光标记的重组病毒感染模型系统
03 激光
“强光源”也是迫切需要解决的关键技术!
阿尔伯特·爱因斯坦 (Albert Einstein) 1916年提出了“关于辐射的量子理论 (On the Quantum Theory of Radiation) ”,其中包括“受激辐射的光放大 (Light Amplification by Stimulated Emission of Radiation,简称Laser) ”的概念 (中文译为激光),这是如何得到强光源的一个思路,他的论述为后来激光的实现奠定了理论基础 。
推荐阅读
- 宾爵手表世界排名第几和天梭一类? 宾爵手表世界排名第几
- 蒸锅430和304哪个更适合食用
- 帝姬和公主有什么区别
- 龙口粉丝怎么泡开 龙口粉丝怎么泡
- 雀巢三花植脂淡奶和全脂淡奶的区别 三花淡奶可以直接饮用吗
- 瑞典和瑞士的区别
- 小灯泡会亮是因为什么和小灯泡组成
- 寸和厘米换算 寸和厘米
- 家和万事兴挂在什么地方好 家和万事兴字画挂客厅什么位置好
- 三花淡奶和淡奶油的区别 三花淡奶是淡奶油吗
